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A novel family is shown of the periodic solutions of the equations of motion of 
a heavy rigid body about a fixed point, for the case when the mass distribution 
within the body is almost the same as the ~stribution in the case of the Labran- 
ge integrability. The. periodic solutions obtained for the unperturbed problem 
correspond to the case when one of the frequencies of the regular Lagrange pre- 

cession becomes equal to zero, i. e. they correspond to the steady rotations ab- 
out the axes situated in the principal plane of inertia of the body about tne 
fixed point. These steady rotations correspond to a bifurcation, and the regul- 
ar precessions branch out from them [l]. For such motions the variational equa- 

tions of the problem stated .above have two zero roots with a single group of 
solutions, The periodic solutions near to the steady rotations of an arbitrary 

solid, were studied in [2]. These solutions, as well as the solutions obtained 
in [3], were based on the Liapunov theorem, i. e. on the assumption that me 
frequencies of the corr~~nd~ng system of equations in variations were incomm- 

ensurable. The author of [4J used the Poincark method to show the existence 
of periodic solutions generated by the steady rotations of the Euler case. 

I., Let us consider the equations of motion of a heavy rigid body about a fixed 

point 0 , written in the Euler - Poisson variables 

AC-Q / dt + (C - B) qr = mg (y,y” - z,y’) (1.1) 

dy I dt = q’ - qy” (ABC, soyozo, pqr, YV’Y”) 

where we assume that the positive direction of the OZ -axis, stationary in tne OX 
YZ coordinate system, coincides with the direction of the force of gravity g. 

We shall consider a class of motions of a rigid body similar to the regular precess- 
ion of the Lagrange’s case. With this in mind, we transform the equations (1.1) by 

introducing a small parameter p using the following substitutions: 

x0 = px&, y, = yyrl, z. == z,l (1. 2) 

B=A(I+pD), k==mgEIC 

P = kp,, q = kq,, r = h* (r. + PrJ 

y = yl, y’ = yl’, y” = yo” + /_~y~“, t =T t,k-l 

where 1 den&s the characteristic dimension of the body, e. g. la = c f m, wntle 

D, ro, # 0 and yo” # 0 are constants. 
Having obtained the transformed equations, we perform a further change of variabl- 

es, namely y17 or’, pit Q1 * yzyzt Ys’, p2* Q2 
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Yl = -Yo”M cos Glt, + pYz, p1 = (Q - rO) M cos Qt, f pp2 (1.3) 

Yi’ = Y2”M sin Qt, + pya’, q1 = (r. - Sz) M sin Qt, + pqz 

where M is an arbitrary constant and Q denotes one of the frequencies of the regular 
precession of the Lagrange’s case. This yields a nonautonomous system of differential 

equations in which the ~ght-hand sides are holomo~hic with respect to the new variab- 

les and p , and are periodic in time. When the conditions z. + 0, Sz # 0, r. # 0, 
yo” # 0, f 1 all hold, th en the above system of equations admists a family of perio- 

dic solutions with the period T = %I / (l&l) (*). 
Let us consider a degenerate case of regular precession, i. e. assume that 52 = 0 

in (1.3), or in other words, we require that the equation 

Cz,y,” + (C - A) ro2 = 0 (1.4) 

holds when zi # 0 and C - A # 0. 
Performing the substitutions (1.2) - ( 1.41, 

a~2 zf 6 - 4r0g2 + 

dq2 / dtz + AlrOp2 - 

we obtain the following system of equations: 

A2waP = 8.1 

(1.5) 

A2w2 = g2 

dya / dt, - roY2' + Yo"Q2 = g, 

dy,’ / dt, - Y2”p2 + r0 Of2 + 1) y2 = g4 

A,=(A-C)/A, A,=CIA 

and complement this system with the equation 

drl I dt, - ylyo”M = g5 
and relation 

(1.6) 

Y1" = fify2 - & (Y22 + Y2’2 + Yi”2) (1.7) 

obtained form the geometrical integral of (1.1) by recalling that the choice of the 

constant M is based on the relation yO12 (MB + 1) = 1. 
In (1.5) and (1.6) gi (i = 1,. , .,5) are known holomorphic functions of the 

parameter l& .and variables ya, y2’, p2, q2 and r1 , becoming constants when 

p=o. 
2. Using the PoincarB’s method of small parameter, we shall seek periodic solut- 

ions of (1.51, (1.6) in the form of power series in p with the period almost equal 

to the period of the generating periodic solution of the system ( 1.5). With this in 

mind, we set 

t, = (1 + a) z, b = pa’ = pal + p2a2 + . . . (2.1) 

In the course of computing every approximation in p , the equation (1.6) becomes 
separated from the basic system (1.5). We shall assume that ri = 0 when T = 0. 
Applying the transformation 

*) See Sergeev, V. S. On a family of periodic solutions of the equations of motion 

of a solid with a fixed point, The Third All-Union Chetaev Conference on the Stabil- 
ity of Motion, Analytical Mechanics and Motion Control, Annot. dokl. Irkutsk, 1977, 
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Xk = akpa + bk% Xk+l = %+l% + bk+lYa’, k = 1,3 

a, = xtA, (A, + 1) roar bl = Alr03y0”-3 (1 + A,y,,““) 

a, = X&Q), b, = --~&4~r&,“-~ 

a3 = ro, b, = Alroayo” 

a* = --~,,~y,“-~ (2 + A1yOI12), b, = - ro3yO”-lA1 (A, + 1) 

we reduce (1.5) to the form 

dXr I dz = x&xs + F,, dX3 I dz = F, (2.2) 

dX, I dz = - 3GIXI + F,, d&I dz = x,X3 -I- F4 

Here the functions Fi of the variables XI (i, j = 1,. . .,4) and p are of the same 
type as gi in (1.5). The constants 

x1* = 4AzzlyOn + roa (Ma + A,“), x2 = A,ro2W (2.3) 

are assumed to be different from zero, i. e. we also require that yo” # ,t 1. 

3, We write the T’ = 2~ / x1 -periodic solutions of the autonomous system of 
equations (2.2) as follows: 

The constants Mk as well as the functions BE = Pk (p-t) (k = Li, 3, 4) must be found, 
together with a r= a (p) , from the conditions of periodicity, The functions X1’ (z, 
p) appearing in (3.1) are found, one after the other, in the form of power series in p\, 

in the course of solving the system (2.2), (1.6). In addition we have X1’ (%, 6) = 
mi and 

m, = -AA,AZrOyO”~l~l, m2 = m, = 0 

m 3= - A, (1 + 4~0"~) (4y,"M3)-fz, 

The equations (2.2), (1.6) admit two independent integrals corresponding to the energy 
and area integrats of the problem. These integrals, which become dependent when 

P 0, ZZZ nevertheless enable us to eliminate from the conditions of periodicity 

Xf (T3 - XZ (0) = 0, i = I,. _ .,4 (3.2) 

rl 0”‘) - r’1 (0) = 0 (3,3) 

the conditions of periodicity of the functions Xl and X3 provided that the inequality 

51 1(2A - C) (1 + A,Yr?> Foe + CZ,‘J’,“ai # 0 (3.4) 

holds. 
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The last con~ti~ of (3.2) serves to determine Ma (I&s = - m,) and the 

holomorphic function fis = Bs (p, a’, 81, pa), and we have 
= 0. 

Bs (0, CC, PI, &) 
The condition (3.3) which can hold only when y, = 0, is reduced to the form 

- TWx,(M, + m, + #Is) T'/ 2 + A44 + fill 4- pH = 0 (3.5) 

d = As--%@ (2 + A 1yoA2) (~~y*“~~~)-l + “,$Q 

where H is a holomorphic function of ~1 in the neighborhood of p = 0 . When 

d#O 
(3.6) 

equation (3.5) yields M4 = 0 and the holomorphic function BP = B4 (p, CS’, PJ 
such that B, (0, a', f&) = 0. Finally, the condition that Xs is periodic when MI 

# 0 yields a’ in the form of a power series in p, the first term of which is equal 

to 
(3.7) 

Thus we can satisfy all conditions of periodicity (3.21, (3.3) and determine the funct- 
ions a = ct (p), pd = fl# (p) (s = 3, 4) in the form of series in positive integral 
powers of p. The quantity M1 + B1 remains arbitrary. Let us require that y” = 
Yo” at the initial instant of time. Then M1 and p1 = p1 (p) can be found from 

the relations (X.7) taken at t = 0. In this case we have 

M, = A,y,“%,%~ (y/2 - 1)-l 
and this proves the following theorem. 

T h e o r e m. When the mass distribution in the body is resembles that of the 

case of Lagrange integrability, i.e. when A - B - ~1, d # I?, z,, # 0 N p, 
Yo = 0, 20 # 0, where I_L is small, then the equations of motion (1.1) admit a 
family of periodic solutions provided that ro # 0, Y"o # 0, f 1, and the condit- 
ions (l-4), (3.4) and (3.6) hold. The solutions can be written in terms of the holom- 

orphic functions of the parameter p in the neighborhood of p = 0 , T = 2s (1 
f a) / (kx,) -periodic in t, with X1 and a given by the formulas (2. l), 

(2.3) and (3.7). 
N o t e, 1. Periodic solutions analogous to those obtained exist also in the case 

when the requirement of the theorem that go = 0 is replaced bj the condition that 
Yo - $. 

Note 2. If we replace, in the transformation (1.31, t, by t, + n / (262), 

then we can show, as before, that a family of periodic solutions exists when the center 
of gravity of the body in question is situated so that lo - JA and zg = 0 (or, accor- 
ding to Note 1, - pa). 

4. Let US now explain to which motions the periodic solutions of (1.1) obtained 
above, correspond. To do this, we compute the first terms of expansions into power 
series in p of the angle of nutation 6, the rates of characteristic rotation and prec- 
ession ‘p’ and $,’ . We have 

6 = 80 + lL@ (1 + cos X1.r) + . * . (yo” = cos S,) (4.1) 
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i&p I dz = p@ cos X1% + . * * 

dv3, / dt = (I$- a,+ + 3 [(R - 8 tg 6,) (cos Xrt -1) - 

Q[, cos xg] -+ . . . 

R = Ml (~,5A~y~")-~ IDA,-lero (r. - St) yes - x1 (1 + A,yo"z)l 

The first and third formula of (4.1) imply that the Oz -axis of the coordinate system 

associated with the principal axes of inertia of me body describes, in the first approx- 
imation, a small ellipse on the unit sphere with center at 0 rotating about the vert- 

ical 02 with constant angular velocity n - Ic [r-e - p (R - 8 tg @,)I / yus . 
At the same time the body executes, in accordance with the second formula of (4.11, 

small librations about the Oz -axis. However, the angle cp acquires a secular term 

already in the second approximation. The family of motions depends on three indep- 

endent constants, namely on the initial values 6@, ‘pO and $, of the Euler angles, 
since the initial value of the variable 

r =f k IrO + pLR (eos x,X - 1) + . . . J 

is connected with es by the formula (1.4). 
The series representing the periodic solutions converge for sufficiently small values 

of p. A method described in [S] can be used to obtain a guaranteed estimate of the 

radius of convergence of these series. 
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